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“Mathematics is about problems, and problems must be made the focus of a student’s mathematical 
life. Painful and creatively frustrating as it may be, students and their teachers should at all times be 
engaged in the process – having ideas, not having ideas, discovering patterns, making conjectures, 
constructing examples and counterexamples, devising arguments, and critiquing each other’s work.” – 
Lockhart (2002, p. 16) 

 
Lockhart, a research mathematician, describes the present system of mathematics education at school as 
nightmarish, claiming that it destroys children’s “natural curiosity and love of pattern-making” (Lockhart, 
2002, p. 2). He goes further in his critique of school mathematics by suggesting that “there is no actual 
mathematics being done in our mathematics classes” (p. 14), and in the place of discovery and exploration 
there is only the mindless drill and exercise of given rules and algorithms. The traditional teaching of proof 
does not escape Lockhart’s scythe either:  

The art of proof has been replaced by a rigid step-by-step pattern of uninspired formal deductions. The textbook 
presents a set of definitions, theorems, and proofs, the teacher copies them onto the blackboard, and the students copy 
them into their notebooks. They are then asked to mimic them in the exercises. Those that catch on to the pattern 
quickly are the “good” students. (Lockhart, 2002, p. 22) 

Lockhart’s criticism of school mathematics as being a caricature of ‘real’ mathematics reverberates down 
the years in the work of many mathematicians, mathematics educators and philosophers. Though by no 
means exhaustive, Table 1 summarizes some of the major differences between ‘real’ mathematics and the 
traditional practice of teaching school (and undergraduate) mathematics.  
 

 Classroom practice Mathematical practice 

Exploration, 
experimentation 
& conjecturing 

Learners are not given the opportunity 
to explore and to experiment, and are 
given the conjecture as fait accompli in 
the form “Prove that …” 

Mathematicians explore, experiment 
and make conjectures on patterns or 
any invariance they observe. The 
situation is typically open-ended and 
divergent. 

Formulation 

Learners are provided with a well-
formulated conditional statement e.g. 
“Prove that p implies q”. 

Mathematicians formulate conjectures 
into conditional statements themselves, 
e.g. “If p, then q”. 
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Truth value 

1. The truth of the result is implied by 
instructions such as “Prove that…” 
Learners thus know beforehand that 
the result is true. 

2. Learners accept the truth of the 
result on the authority of the teacher 
and the textbook. 

1. Mathematicians do NOT necessarily 
know beforehand whether a 
conjecture is true or not.  

2. Mathematicians usually determine the 
truth of a conjecture themselves via 
both experimentation and proof. 

Proving 

1. Learners almost never engage in the 
refutation of false conjectures 
because the curriculum/textbook 
only focuses on true statements. 

2. Learners are usually guided by various 
sub-steps or sub-problems towards 
an eventual proof. 

1. Mathematicians logically both prove 
and refute conjectures. 

2. Mathematicians have to rely on their 
own ingenuity to make a logical 
connection between the premise and 
the conclusion. 

 
TABLE 1:  Comparison of classroom and ‘real’ mathematics. 

 
The purpose of this paper is to describe a mathematical exploration recently undertaken by the authors 
that aims to highlight some of the main features of conjecturing, refutation and proving. It is not implied 
that this particular investigation is suitable for use in a typical high school classroom, but it is hoped that it 
will inspire practicing teachers to critically reflect on the ‘mathematical authenticity’ of their own 
classroom practice. These examples might also be of value in mathematics teacher education to engage 
students in some conjecturing, refutation and proof. 
 
INITIAL CONJECTURES 

This investigation followed on the two iterative construction procedures described in De Villiers (2014) 
where the iterated triangles converged towards an equilateral triangle. The reader is now invited to recreate 
the constructions described below with suitable dynamic geometry software or to go online and 
dynamically experience the following two investigations by going to the ready-made JavaSketchpad sketches 
at:  

http://dynamicmathematicslearning.com/collinear-incentres-conjecture.html  
 
INVESTIGATION 1: TANGENT POINTS OF INCIRCLE 

Start with any ABC  and its incircle and incentre I. Label the points where the circle touches the sides 
BC , CA  and AB  respectively as 1A , 1B  and 1C  as shown in Figure 1. Repeat the process with the new 

111 CBA  and determine its incentre I1. Then repeat the process twice more. Connect I to I3 with a straight 

line. What do you visually notice about the four incentres? Check by dragging vertices A , B  or C . Can 
you make a conjecture? Can you prove or disprove your conjecture? 
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INVESTIGATION 2: EXCENTRES 

Start with any ABC  and construct its incentre I and excentres1. Label the excentres formed on the sides 
of the sides BC , CA  and AB  respectively as 1A , 1B  and 1C , and construct its incentre I1. Repeat the 

process with the new 111 CBA . Then repeat the process twice more. Connect I to I3 with a straight line. 

What do you visually notice about the four incentres? Check by dragging vertices A , B  or C . Can you 
make a conjecture? Can you prove or disprove your conjecture? 

In Figure 1 it seems that all four incentres are collinear (lie on the same straight line), with I2 and I3 almost 
coinciding. A similar collinear relationship seems to exist in Figure 2 – although I1 does not lie on the 
constructed line from I to I3, the other three incentres do appear to be collinear. Checking of the 
conjectures by dragging within a dynamic geometry context convinced us that the conjectures were valid. 
The reader is now also encouraged to do so in the link provided earlier, if not previously done. 

Armed with compelling experimental evidence that our conjectures were true, having passed the ‘drag-
test’, we proceeded to attack the two conjectures trying both geometric as well as algebraic approaches. 
Neither approach was immediately successful, with the algebraic approach especially becoming 
increasingly cumbersome and messy. Scanning the literature for any mention of the results, as well as other 
related mathematical results we might be able to use, also proved fruitless. However, we did find that 
Denison (2001) mentions the second conjecture as unproved, although incorrectly claiming that all these 
incentres are collinear (I1 does not lie on the line as already shown in Figure 2). 
 
 
 
 
 

                                                 
1 The three excentres of a triangle are located at the intersection of the angle bisectors of the two exterior angles 
formed on each side of the triangle. For more information: 
http://en.wikipedia.org/wiki/Incircle_and_excircles_of_a_triangle 

FIGURE 1:  Investigation 1 – Iteration of 
tangent points of incircle. 

FIGURE 2:  Investigation 2 – Iteration of 
excentres. 
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A THIRD CONJECTURE 

In an effort to try and find possible ideas for proving our conjectures, we next considered similar 
constructions for the following cases: 

1) Start with any ABC  and construct its circumcentre O as shown in Figure 3. Label the midpoints of 
the sides BC , CA  and AB  respectively as 1A , 1B  and 1C , and construct its circumcentre O1. 

Repeat the process with the new 111 CBA . Then repeat the process once more. Connect O to O1 

with a straight line. What do you visually notice about the three circumcentres and the centroid G? 
Check by dragging vertices A , B  or C . Can you make a conjecture? Can you prove or disprove 
your conjecture2?  

2) Orthocentres of successive orthic triangles do not work. 

3) Centroids of successive median triangles do not work either as one always gets the centroid of the 
original triangle. 

 

FIGURE 3:  Iteration of circumcentres. 
 

PROOF OF CONJECTURE  3 

Although the third conjecture about circumcentres above can be proved using coordinate geometry, it was 
more straightforward to prove it using the useful idea of a spiral similarity, which is defined as the 
composition of a rotation followed by a dilation (reduction or enlargement)3. For example, it is clear that 
the median triangle 111 CBA  is similar to ABC . Hence, a half turn around the centre of similarity, the 

centroid G (the point of concurrency of the medians), followed by a dilation with scale factor ½ maps 
ABC  onto 111 CBA , and hence O onto O1. Therefore, O, G and O1 are collinear, and GO = 2GO1. The 

same argument applies to the mapping of 111 CBA  onto ∆A2B2C2; hence O1, G and O2 are collinear, and 

GO1 = 2GO2. By continuing the process it follows that all further circumcentres will be collinear with G 
and the preceding circumcentres. 
 

                                                 
2The reader is invited to dynamically explore the construction at: 

http://dynamicmathematicslearning.com/collinear-circumcentres-conjecture.html 
3 Read more about a spiral similarity at: http://www.cut-the-knot.org/Curriculum/Geometry/SpiralSimilarity.shtml  
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REFUTATION OF CONJECTURES 1 AND 2 
Our frustrating inability to prove Conjectures 1 and 2 gradually led us to suspect that perhaps they were 
false, despite the seemingly convincing experimental evidence. We thus went back to the proverbial 
drawing board to more closely examine the conjectures – this time looking more closely at them and trying 
to produce counter-examples to disprove them. 

Since the incentres in Figure 1 are grouped so closely together, we clearly needed to enlarge the figures by 
zooming in. By doing this for Conjecture 1 we could already begin to see that I1 was not collinear with the 
other points. Alternatively, and more efficiently, one could rather use the dilation tool of the dynamic 
geometry software to enlarge relevant portions or elements of the figure to examine more closely. By 
marking I2 as the centre of dilation, and enlarging the line through I and I3 as well as the incentres I, I1and 
I3 by an enlargement factor of 100, we noted that the line shifted to the upper dashed line as shown in 
Figure 4. However, the images of I and I3 still lay on the upper dashed line, whereas the image of I1 did 
not. (Points I´ and I´1 were obviously off screen in the figure, but in the software one can scroll up and to 
the right to check where they actually lie in relation to the enlarged upper dashed line). Moreover, despite 
I2 appearing to lie on the constructed line from I to I3, the line shift clearly showed that I2 was not on the 
line. Despite our strong initial conviction, this showed conclusively that the incentres for Conjecture 1 
were not collinear! 
 
 
 

 

 

 

FIGURE 4:  Counter-example to Conjecture 1. 
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FIGURE 5:  Counter-example to Conjecture 2. 

Similarly we found for Conjecture 2, as 
shown in Figure 5, that by enlarging the 
upper dashed line II3 (from I2 as centre) as 
well as the incentres I and I3 by a scale factor 
of 100, the line shifted to the lower dashed 
line. Despite visually appearing to lie on the 
line and surviving the initial ‘drag-test’, this 
indicated that I2 actually did not. (Note that 
because of the large scale factor the images I´ 
and I´3 were completely off-screen, but some 
scrolling confirmed that they were on the 
enlarged lower dashed line). 

Since the points lie so close to a straight line, 
it is important to emphasize that there is 
hardly any way we would have found these 
counter-examples by mere paper-and-pencil 
construction - unless we’d worked on a sheet 
of paper about 100 times the size of an A4 
sheet and were able to make accurate 
constructions using extremely large and unwieldy compasses and rulers! This episode therefore lucidly 
illustrates how useful computing software has become in modern day mathematical research, not only to 
find and formulate new conjectures, but also to enable one to disprove false statements with the 
production of counter-examples.  
 
CONCLUDING REMARKS 

Albert Einstein is reputed to have once said: “I think and think for months and years. Ninety-nine times, the 
conclusion is false. The hundredth time I am right.” In similar vein, he is often quoted as having said: “The most 
important tool of the theoretical physicist is his wastebasket.” Another popular story tells that when Einstein first 
arrived at Princeton University in 1933 he was asked what equipment he required for his office. He 
replied, so the story goes: "A desk, some pads and a pencil, and a large wastebasket to hold all of my mistakes." 

Although some of these humorous anecdotes may well be apocryphal, there is no doubt an element of 
truth in them, and at the very least they suggest some prevalence of ‘mistakes’ and ‘errors’ in Einstein’s 
groundbreaking theoretical exploration of the physical world. Similarly, research mathematicians do not 
only make true conjectures, but often many false ones as well. It is just as important for a research 
mathematician to be able to disprove a false conjecture as it is to prove a true one. At school and 
undergraduate mathematics, however, textbooks in mathematics seldom give sufficient attention to 
cultivating ‘refutation’ as a critical ‘habit of mind’, except perhaps with a few examples related to number 
theory. 

As strongly argued by Lakatos (1976), and illustrated historically with the Euler-Descartes theorem for 
polyhedra, both local and global refutation often plays an indispensable part in the development of 
mathematical knowledge. With global refutation is meant here the production of a counter-example that 
shows that a statement is false and needs to be rejected. In contrast, local or heuristic refutation typically 
challenges perhaps only one step in a logical argument or merely some aspect of the domain of validity of 
the statement; eventually leading to a more precise proof or formulation of the statement itself (and 
perhaps also a refinement of the concepts involved). A highly accessible example of heuristic refutation is 
provided in De Villiers (2003, pp. 40-44; 156-157) where learners and students are confronted with the 
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heuristic counter-example of a quadrilateral which is dragged into the shape of a ‘crossed quadrilateral’, for 
which the interior angle sum is 720°, and not 360°. 

Unfortunately textbooks (and therefore teachers also) tend to fall into the trap that Freudenthal (1973) has 
called the anti-didactical inversion; in other words, teaching only the final, polished mathematical product 
without showing its evolution over a period of time. By providing refined definitions, ready-made 
theorems and efficient algorithms, heuristic and global refutations are circumvented ‘a priori’, and hence 
cannot feature. Such a ‘sanitized’ approach therefore hides the adventure of ‘doing real mathematics’ from 
learners and students. 

Although the investigation reported here led to only one proved conjecture and two falsified ones, it was 
still a useful learning experience for us. In our attempts to prove the ill-fated conjectures we rediscovered 
several other known properties of incircles and excircles. We also learnt how to critically check and refute 
geometric conjectures using the dilation tool. As Rav (1999) has pointed out with reference to the famous 
Goldbach conjecture, even if a counter-example were to be produced to it tomorrow, that would not 
lessen the tremendous impact of what has been learnt from various efforts to try and prove it.  

It is hoped that in future more tasks and explorations in textbooks at school and university would be 
formulated in a more open-ended manner. For example, instead of the usual “Prove that …” it would be 
pleasing to see the more mathematically authentic version: “Explore whether the following conjecture is 
true or not. If true, prove it. If false, produce a counter-example.” Of course, better still would be if 
learners and students could be led to make their own conjectures, and then to prove or disprove them. 
Though that is not a feasible strategy to use all the time, students and learners ought to at least experience 
a few instances of this during their mathematical education.  
 
NOTE 
Prof. de Villiers and Prof. Heideman are respectively co-chair and chair of the South African Mathematics 
Olympiad (SAMO) committee at: http://www.samf.ac.za/About.aspx 
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